Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-chlorido-bis[chloridobis(dimethyl sulfoxide)dioxidouranium(VI)]

Koichiro Takao¥ and Yasuhisa Ikeda*

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
Correspondence e-mail: yikeda@nr.titech.ac.jp
Received 20 November 2007; accepted 29 November 2007
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{C})=0.010 \AA$; R factor $=0.043 ; w R$ factor $=0.111$; data-to-parameter ratio $=23.7$.

In the crystal structure of the title compound, $\left[\mathrm{U}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{4}\right]$, the compound has a centrosymmetric dimeric structure bridged by two chloride anions. Each U^{VI} atom is seven-coordinate in a pentagonal-bipyramidal geometry. In the equatorial plane of the uranyl unit there are two O atoms from non-adjacent dimethyl sulfoxides and three chloride ions (of which two chlorides are bridging). The compound is of interest as an anhydrous starting material of the uranyl(VI) ion.

Related literature

For related structures, see: Berthet et al. (2000); Charpin et al. (1987); Rebizant et al. (1987); Wilkerson et al. (1999). For the synthesis, see: Calderazzo et al. (1997); Berthet et al. (2000).

Experimental

Crystal data
$\left[\mathrm{U}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{4}\right]$

$$
\begin{aligned}
& a=9.172(3) \AA \\
& b=12.833(4) \AA \\
& c=10.691(2) \AA
\end{aligned}
$$

$\beta=97.72(2)^{\circ}$
$V=1247.0$ (6) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
Data collection
Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan (Higashi, 1999)
$T_{\text {min }}=0.051, T_{\text {max }}=0.128$
$\mu=13.76 \mathrm{~mm}^{-1}$
$T=173$ (2) K
$0.33 \times 0.21 \times 0.15 \mathrm{~mm}$

10244 measured reflections
2849 independent reflections
2330 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 \quad 120$ parameters
$w R\left(F^{2}\right)=0.111$
H -atom parameters constrained
$S=1.10$
$\Delta \rho_{\text {max }}=2.54 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.25 \mathrm{e}^{-3}$

Table 1
Selected interatomic distances (\AA).

$\mathrm{U} 1-\mathrm{O} 1$	$1.746(7)$	$\mathrm{U} 1-\mathrm{Cl} 2$	$2.686(2)$
$\mathrm{U} 1-\mathrm{O} 2$	$1.757(6)$	$\mathrm{U} 1-\mathrm{Cl} 1$	$2.844(2)$
$\mathrm{U} 1-\mathrm{O} 3$	$2.349(6)$	$\mathrm{U} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.909(2)$
$\mathrm{U} 1-\mathrm{O} 4$	$2.360(6)$		

Symmetry code: (i) $-x+2,-y+1,-z+1$.
Data collection: PROCESS-AUTO (Rigaku/MSC, 2000-2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000-2006); program(s) used to solve structure: SIR92 (Altomare et al. 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2386).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Berthet, J. C., Lance, M., Nierlich, M. \& Ephritikhine, M. (2000). Eur. J. Inorg. Chem. pp. 1969-1973.
Calderazzo, F., De Benedetto, G. E., Detti, S. \& Pampaloni, G. (1997). J. Chem. Soc. Dalton Trans. pp. 3319-3324.
Charpin, P., Lance, M., Nierlich, M., Vigner, D. \& Baudin, C. (1987). Acta Cryst. C43, 1832-1833.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rebizant, J., Van den Bossche, G., Spirlet, M. R. \& Goffart, J. (1987). Acta Cryst. C43, 1298-1300.
Rigaku/MSC (2000-2006). CrystalStructure (Version 3.8) and PROCESSAUTO (Version 2.01), Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wilkerson, M. P., Burns, C. J., Paine, R. T. \& Scott, B. L. (1999). Inorg. Chem. 38, 4156-4158.

[^0]
supplementary materials

Acta Cryst. (2008). E64, m107 [doi:10.1107/S1600536807064264]

Di- $\mu_{\text {-chlorido-bis[chloridobis(dimethyl sulfoxide)dioxidouranium(VI)] }}$

K. Takao and Y. Ikeda

Comment

The title compound (I) was unexpectedly obtained from a hydrochloric acid aqueous solution containing U^{4+} and dimethyl sulfoxide (DMSO). It is reasonable to consider that \mathbf{I} was formed by aerobic oxidation of U^{4+} to $\mathrm{UO}_{2}{ }^{2+}$.

The title compound \mathbf{I} has a dimeric structure which is bridged by two $\mu-\mathrm{Cl}^{-}$between $\mathrm{UO}_{2} \mathrm{Cl}(\mathrm{DMSO})_{2}$ fragments as shown in Fig. 1. There is an inversion center in the molecular structure of \mathbf{I}. Each U atom is seven-coordinated in a pentagonalbipyramidal geometry. Two O atoms are at the axial positions [mean $\mathrm{U}=\mathrm{O}_{\mathrm{yl}}=1.75$ (1) \AA] (Table 1). In the equatorial plane of each U , there are three Cl^{-}ions; two of them act as $\mu-\mathrm{Cl}^{-}$to bridge the U atoms in \mathbf{I} [mean $\mathrm{U}-\mathrm{Cl}_{\text {bridge }}=2.88$ (3) \AA], and the remaining Cl^{-}is placed at the position independent of the bridge formation [$\mathrm{U}-\mathrm{Cl}_{\text {non-bridge }}=2.686$ (2) \AA]. The DMSO molecules in the equatorial plane coordinates to U through its O , and are non-adjacent [mean $\mathrm{U}-\mathrm{O}_{\mathrm{DMSO}}=2.35(1) \AA$]. Deviations of Cl^{-}and O of DMSO from the mean equatorial plane are within $0.15 \AA$. Interatomic distances between $\mathrm{U}(1) \cdots \mathrm{U}(1)^{\mathrm{i}}$ and $\mu-\mathrm{Cl}(1) \cdots \mu-\mathrm{Cl}(1)^{\mathrm{i}}$ [symmetry code: (i) $\left.-x+2,-y+1,-z+1\right]$ are 4.7669 (3) and 3.221 (3) \AA, respectively, which indicate no interatomic interaction in each pair. These structural features of \mathbf{I} are similar to that of $\left[\mathrm{UO}_{2} \mathrm{Cl}(\mathrm{THF})_{2}\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{THF}=$ tetrahydrofuran) reported by Charpin et al. (1987).

Previously, some anhydrous uranyl(VI) salts, $\mathrm{UO}_{2} \mathrm{Br}_{2}(\mathrm{THF})_{3}, \mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{THF})_{3}, \quad\left[\mathrm{UO}_{2} \mathrm{Cl}(\mathrm{THF})_{2}\right]_{2}(\mu-\mathrm{Cl})_{2}$, and $\mathrm{UO}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} L_{3}(L=$ THF, pyridine), were reported (Rebizant et al. 1987, Wilkerson et al. 1999, Charpin et al. 1987, Berthet et al. 2000, respectively). In syntheses of water-sensitive uranyl(VI) compounds, e.g., alkoxides and amides, anhydrous starting materials must be used. On the other hand, THF is not very stable, and may be decomposed by its polymerization in presence of a strong acid, e.g. $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (Calderazzo et al. 1997 and Berthet et al. 2000). Compound \mathbf{I} also has simple composition, i.e., consisting only of $\mathrm{UO}_{2}{ }^{2+} \mathrm{Cl}^{-}$, and DMSO. The use of DMSO insead of THF expands the number of choices of the anhydrous uranyl(VI) salts as the starting material.

Experimental

Uranium(VI) trioxide was dissolved in $5 M$ hydrochloric acid solution. With heating and vigrous stirring, 2 molar amount of silver powder was added in the HCl aq. After 30 min , the mixture was cooled to room temperature. The insoluble residure of AgCl was removed by filtration. Small portion $(c a 1 \mathrm{ml})$ of this filtrate was separated in a test tube. In this sample, some drops of dimethyl sulfoxide was added. The mixture was allowed to the air. After several days, yellow crystals of the title compound deposited.

supplementary materials

Refinement

H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and torsion angles were refined to fit the electron density, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak in the final difference Fourier map is $0.91 \AA$ apart from the U atom.

Figures

Fig. 1. Molecular structure of I drawn by thermal ellipsoids in 50% probability level. Asymmetric unit was expanded by the symmetry operation; (i) $-x+2,-y+1,-z+1$. Hydrogen atoms are omitted for clarity.

Fig. 2. Packing view of I drawn by thermal ellipsoids in 50\% probability level. Hydrogen atoms are omitted for clarity.

Di- μ-chlorido-bis[chloridobis(dimethyl sulfoxide)dioxidouranium(VI)]

Crystal data

$\left[\mathrm{U}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{4}\right]$

$$
M_{r}=994.37
$$

Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.172$ (3) \AA
$b=12.833$ (4) \AA
$c=10.691(2) \AA$
$\beta=97.72$ (2) ${ }^{\circ}$
$V=1247.0(6) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F_{000}=904 \\
& D_{\mathrm{x}}=2.648 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71075 \AA \\
& \text { Cell parameters from } 10519 \text { reflections } \\
& \theta=3.1-27.5^{\circ} \\
& \mu=13.76 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.33 \times 0.21 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 10.00 pixels mm^{-1}
$T=173(2) \mathrm{K}$

2849 independent reflections
2330 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\min }=3.2^{\circ}$

ω scans

Absorption correction: multi-scan (Higashi, 1999)
$T_{\text {min }}=0.051, T_{\text {max }}=0.128$
10244 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.111$
$S=1.10$
2849 reflections
120 parameters

$$
\begin{aligned}
& h=-11 \rightarrow 11 \\
& k=-16 \rightarrow 15 \\
& l=-13 \rightarrow 13
\end{aligned}
$$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0595 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=2.54 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-2.25$ e \AA^{-3}
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0012 (2)

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
U1	$0.78418(3)$	$0.51860(2)$	$0.35047(3)$	$0.02280(14)$
C11	$0.9986(2)$	$0.37721(17)$	$0.4687(2)$	$0.0309(5)$
C12	$0.5528(3)$	$0.5489(2)$	$0.1718(2)$	$0.0381(5)$
S1	$0.7780(2)$	$0.28472(17)$	$0.1748(2)$	$0.0279(5)$
S2	$0.8069(3)$	$0.78684(18)$	$0.3045(2)$	$0.0319(5)$
O1	$0.6738(8)$	$0.4945(5)$	$0.4683(6)$	$0.0310(14)$
O2	$0.8996(8)$	$0.5398(5)$	$0.2345(6)$	$0.0327(15)$
O3	$0.7203(7)$	$0.3496(5)$	$0.2783(5)$	$0.0280(13)$
O4	$0.7311(7)$	$0.6977(5)$	$0.3661(5)$	$0.0296(14)$
C1	$0.7963(11)$	$0.1587(7)$	$0.2424(9)$	$0.037(2)$
H1A	0.8810	0.1575	0.3089	0.044^{*}

H1B	0.8112	0.1077	0.1771	0.044^{*}
H1C	0.7068	0.1412	0.2788	0.044^{*}
C2	$0.6207(11)$	$0.2632(8)$	$0.0621(8)$	$0.038(2)$
H2A	0.5958	0.3275	0.0145	0.045^{*}
H2B	0.5377	0.2424	0.1055	0.045^{*}
H2C	0.6416	0.2078	0.0039	0.045^{*}
C3	$0.8216(13)$	$0.8880(8)$	$0.4207(9)$	$0.047(3)$
H3A	0.8973	0.8694	0.4907	0.057^{*}
H3B	0.7269	0.8965	0.4523	0.057^{*}
H3C	0.8487	0.9534	0.3826	0.057^{*}
C4	$0.6660(13)$	$0.8391(8)$	$0.1913(8)$	$0.044(3)$
H4A	0.6462	0.7909	0.1199	0.053^{*}
H4B	0.6980	0.9064	0.1612	0.053^{*}
H4C	0.5762	0.8488	0.2303	0.053^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U1	$0.0247(2)$	$0.0179(2)$	$0.0251(2)$	$0.00006(13)$	$0.00058(12)$	$0.00017(11)$
C11	$0.0314(12)$	$0.0197(11)$	$0.0385(11)$	$0.0033(9)$	$-0.0067(8)$	$-0.0050(8)$
C12	$0.0366(13)$	$0.0324(13)$	$0.0412(13)$	$0.0003(10)$	$-0.0095(9)$	$0.0021(10)$
S1	$0.0264(12)$	$0.0235(12)$	$0.0338(11)$	$-0.0005(9)$	$0.0040(8)$	$-0.0015(8)$
S2	$0.0318(13)$	$0.0245(12)$	$0.0395(12)$	$0.0020(9)$	$0.0052(9)$	$0.0044(9)$
O1	$0.036(4)$	$0.025(3)$	$0.032(3)$	$-0.001(3)$	$0.004(3)$	$-0.003(2)$
O2	$0.036(4)$	$0.033(4)$	$0.029(3)$	$-0.003(3)$	$0.004(2)$	$0.000(3)$
O3	$0.032(4)$	$0.023(3)$	$0.027(3)$	$0.000(3)$	$0.000(2)$	$-0.003(2)$
O4	$0.038(4)$	$0.014(3)$	$0.036(3)$	$0.002(3)$	$0.004(2)$	$0.002(2)$
C1	$0.038(6)$	$0.020(5)$	$0.051(6)$	$0.010(4)$	$0.001(4)$	$-0.002(4)$
C2	$0.043(6)$	$0.037(6)$	$0.030(5)$	$0.008(5)$	$-0.007(4)$	$-0.002(4)$
C3	$0.051(7)$	$0.027(6)$	$0.061(7)$	$-0.013(5)$	$-0.001(5)$	$-0.001(5)$
C4	$0.055(7)$	$0.041(6)$	$0.036(5)$	$0.011(5)$	$0.001(4)$	$0.018(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{U} 1-\mathrm{O} 1$	$1.746(7)$	$\mathrm{S} 2-\mathrm{C} 4$	$1.779(9)$
$\mathrm{U} 1-\mathrm{O} 2$	$1.757(6)$	$\mathrm{S} 2-\mathrm{C} 3$	$1.789(10)$
$\mathrm{U} 1-\mathrm{O} 3$	$2.349(6)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800
$\mathrm{U} 1-\mathrm{O} 4$	$2.360(6)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800
$\mathrm{U} 1-\mathrm{Cl} 2$	$2.686(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800
$\mathrm{U} 1-\mathrm{Cl} 1$	$2.844(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{U} 1-\mathrm{C} 11^{\mathrm{i}}$	$2.909(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800
$\mathrm{Cl} 1-\mathrm{U} 1^{\mathrm{i}}$	$2.909(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{U} 1-\mathrm{U} 1^{\mathrm{i}}$	$4.7669(16)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
$\mathrm{Cl} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$3.221(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9800
$\mathrm{~S} 1-\mathrm{O} 3$	$1.535(6)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
$\mathrm{~S} 1-\mathrm{C} 1$	$1.770(9)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{~S} 1-\mathrm{C} 2$	$1.773(9)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9800
$\mathrm{~S} 2-\mathrm{O} 4$	$1.533(6)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800

sup-4

supplementary materials

$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 2$	178.0 (3)
O1-U1-O3	86.0 (2)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 3$	93.4 (2)
O1-U1-O4	88.6 (3)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 4$	92.8 (3)
$\mathrm{O} 3-\mathrm{U} 1-\mathrm{O} 4$	151.3 (2)
O1-U1-Cl2	93.4 (2)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{Cl} 2$	88.2 (2)
$\mathrm{O} 3-\mathrm{U} 1-\mathrm{Cl} 2$	76.21 (15)
O4-U1-Cl2	76.03 (16)
O1-U1-Cl1	90.0 (2)
O2-U1-Cl1	88.1 (2)
O3-U1-Cl1	71.59 (15)
O4-U1-Cl1	136.62 (15)
C12-U1-Cl1	147.29 (7)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{Cl1}{ }^{\text {i}}$	90.8 (2)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{Cl} 1^{\mathrm{i}}$	88.5 (2)
O3-U1-Cl1 ${ }^{\text {i }}$	139.54 (15)
$\mathrm{O} 4-\mathrm{U} 1-\mathrm{Cl} 1^{\mathrm{i}}$	68.58 (15)
$\mathrm{Cl} 2-\mathrm{U} 1-\mathrm{Cl1}{ }^{\text {i }}$	144.24 (7)
$\mathrm{Cl1}-\mathrm{U} 1-\mathrm{Cl1}{ }^{\text {i }}$	68.09 (7)
$\mathrm{U} 1-\mathrm{Cl1}-\mathrm{U} 1^{\text {i }}$	111.91 (7)
O3-S1-C1	102.9 (4)
O3-S1-C2	104.3 (4)
C1-S1-C2	99.2 (5)
O4-S2-C4	104.1 (5)
O4-S2-C3	103.9 (4)
O1-U1-Cl1-U1 ${ }^{\text {i }}$	-90.9 (2)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{Cl} 1-\mathrm{U} 1^{\mathrm{i}}$	89.2 (2)
O3-U1-Cl1-U1 ${ }^{\text {i }}$	-176.64 (17)
$\mathrm{O} 4-\mathrm{U} 1-\mathrm{Cl} 1-\mathrm{U} 1^{\text {i }}$	-2.9 (3)
$\mathrm{Cl} 2-\mathrm{U} 1-\mathrm{Cl} 1-\mathrm{U} 1^{\mathrm{i}}$	172.88 (11)
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{U} 1-\mathrm{Cl} 1-\mathrm{U} 1{ }^{\mathrm{i}}$	0.0
C1-S1-O3-U1	138.5 (5)
C2-S1-O3-U1	-118.4 (5)
O1-U1-O3-S1	-172.8 (5)
O2-U1-O3-S1	5.3 (5)
O4-U1-O3-S1	107.4 (5)

Symmetry codes: (i) $-x+2,-y+1,-z+1$.

C4-S2-C3	100.3 (5)
S1-O3-U1	130.0 (4)
S2-O4-U1	125.9 (4)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
S1-C1-H1C	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1B-C1-H1C	109.5
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
S1-C2-H2B	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{S} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
S2-C3-H3B	109.5
H3A-C3-H3B	109.5
S2-C3-H3C	109.5
H3A-C3-H3C	109.5
H3B-C3-H3C	109.5
S2-C4-H4A	109.5
S2-C4-H4B	109.5
H4A-C4-H4B	109.5
S2-C4-H4C	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
$\mathrm{Cl} 2-\mathrm{U} 1-\mathrm{O} 3-\mathrm{S} 1$	92.7 (4)
$\mathrm{Cl1}-\mathrm{U} 1-\mathrm{O} 3-\mathrm{S} 1$	-81.5 (4)
C11- ${ }^{\text {i }}$ U1-O3-S1	-86.3 (4)
$\mathrm{C} 4-\mathrm{S} 2-\mathrm{O} 4-\mathrm{U} 1$	113.6 (5)
C3-S2-O4-U1	-141.8 (5)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 4-\mathrm{S} 2$	169.6 (5)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 4-\mathrm{S} 2$	-9.0 (5)
$\mathrm{O} 3-\mathrm{U} 1-\mathrm{O} 4-\mathrm{S} 2$	-111.3 (5)
C12-U1-O4-S2	-96.5 (4)
$\mathrm{Cl1}-\mathrm{U} 1-\mathrm{O} 4-\mathrm{S} 2$	81.1 (4)
$\mathrm{C} 11-\mathrm{U} 1-\mathrm{O} 4-\mathrm{S} 2$	78.3 (4)

supplementary materials

Fig. 1

Fig. 2

[^0]: \ddagger This author's last name has been changed from 'Mizuoka'.

